Files
FlaxEngine/Source/Engine/Physics/Physics.cpp

1147 lines
36 KiB
C++

// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
#include "Physics.h"
#include "PhysicalMaterial.h"
#include "Engine/Core/Log.h"
#include "Engine/Threading/Threading.h"
#include "Engine/Platform/CPUInfo.h"
#include "PhysicsSettings.h"
#include "Utilities.h"
#include "PhysicsStepper.h"
#include "SimulationEventCallback.h"
#if WITH_VEHICLE
#include "Actors/WheeledVehicle.h"
#endif
#include "Engine/Level/Level.h"
#include "Actors/PhysicsActor.h"
#include "Engine/Profiler/ProfilerCPU.h"
#include "Engine/Core/Memory/Memory.h"
#include "Engine/Engine/EngineService.h"
#include "Engine/Serialization/Serialization.h"
#include "Engine/Engine/Time.h"
#include <ThirdParty/PhysX/PxPhysicsAPI.h>
#include <ThirdParty/PhysX/PxActor.h>
#if WITH_VEHICLE
#include <ThirdParty/PhysX/vehicle/PxVehicleUpdate.h>
#endif
#if WITH_PVD
#include <ThirdParty/PhysX/pvd/PxPvd.h>
#endif
// Temporary memory size used by the PhysX during the simulation. Must be multiply of 4kB and 16bit aligned.
#define SCRATCH_BLOCK_SIZE (1024 * 128)
#define PHYSX_VEHICLE_DEBUG_TELEMETRY 0
#if PHYSX_VEHICLE_DEBUG_TELEMETRY
#include "Engine/Core/Utilities.h"
#endif
class PhysXAllocator : public PxAllocatorCallback
{
public:
void* allocate(size_t size, const char* typeName, const char* filename, int line) override
{
return Allocator::Allocate(size, 16);
}
void deallocate(void* ptr) override
{
Allocator::Free(ptr);
}
};
class PhysXError : public PxErrorCallback
{
public:
PhysXError()
{
}
~PhysXError()
{
}
public:
// [PxErrorCallback]
void reportError(PxErrorCode::Enum code, const char* message, const char* file, int line) override
{
LOG(Error, "PhysX Error! Code: {0}.\n{1}\nSource: {2} : {3}.", static_cast<int32>(code), String(message), String(file), line);
}
};
PxFilterFlags FilterShader(
PxFilterObjectAttributes attributes0, PxFilterData filterData0,
PxFilterObjectAttributes attributes1, PxFilterData filterData1,
PxPairFlags& pairFlags, const void* constantBlock, PxU32 constantBlockSize)
{
// Let triggers through
if (PxFilterObjectIsTrigger(attributes0) || PxFilterObjectIsTrigger(attributes1))
{
pairFlags |= PxPairFlag::eNOTIFY_TOUCH_FOUND;
pairFlags |= PxPairFlag::eNOTIFY_TOUCH_LOST;
pairFlags |= PxPairFlag::eDETECT_DISCRETE_CONTACT;
return PxFilterFlag::eDEFAULT;
}
// Send events for the kinematic actors but don't solve the contact
if (PxFilterObjectIsKinematic(attributes0) && PxFilterObjectIsKinematic(attributes1))
{
pairFlags |= PxPairFlag::eNOTIFY_TOUCH_FOUND;
pairFlags |= PxPairFlag::eNOTIFY_TOUCH_PERSISTS;
pairFlags |= PxPairFlag::eNOTIFY_TOUCH_LOST;
pairFlags |= PxPairFlag::eDETECT_DISCRETE_CONTACT;
return PxFilterFlag::eSUPPRESS;
}
// Trigger the contact callback for pairs (A,B) where the filtermask of A contains the ID of B and vice versa
if ((filterData0.word0 & filterData1.word1) && (filterData1.word0 & filterData0.word1))
{
pairFlags |= PxPairFlag::eSOLVE_CONTACT;
pairFlags |= PxPairFlag::eDETECT_DISCRETE_CONTACT;
pairFlags |= PxPairFlag::eNOTIFY_TOUCH_FOUND;
pairFlags |= PxPairFlag::eNOTIFY_TOUCH_PERSISTS;
pairFlags |= PxPairFlag::ePOST_SOLVER_VELOCITY;
pairFlags |= PxPairFlag::eNOTIFY_CONTACT_POINTS;
return PxFilterFlag::eDEFAULT;
}
// Ignore pair (no collisions nor events)
return PxFilterFlag::eKILL;
}
enum class ActionType
{
Sleep,
};
struct ActionData
{
ActionType Type;
PxActor* Actor;
};
PxPhysics* CPhysX = nullptr;
#if WITH_PVD
PxPvd* CPVD = nullptr;
#endif
namespace
{
PhysXAllocator PhysXAllocatorCallback;
PhysXError PhysXErrorCallback;
PxSimulationFilterShader PhysXDefaultFilterShader = PxDefaultSimulationFilterShader;
PxTolerancesScale ToleranceScale;
SimulationEventCallback EventsCallback;
void* ScratchMemory = nullptr;
FixedStepper* Stepper = nullptr;
CriticalSection FlushLocker;
Array<PxActor*> NewActors;
Array<ActionData> Actions;
Array<PxActor*> DeadActors;
Array<PxMaterial*> DeadMaterials;
Array<PxBase*> _deadObjects;
Array<PhysicsColliderActor*> DeadColliders;
Array<Joint*> DeadJoints;
bool _queriesHitTriggers = true;
bool _isDuringSimulation = false;
PhysicsCombineMode _frictionCombineMode = PhysicsCombineMode::Average;
PhysicsCombineMode _restitutionCombineMode = PhysicsCombineMode::Average;
PxFoundation* _foundation = nullptr;
#if COMPILE_WITH_PHYSICS_COOKING
PxCooking* Cooking = nullptr;
#endif
PxScene* PhysicsScene = nullptr;
PxMaterial* DefaultMaterial = nullptr;
PxControllerManager* ControllerManager = nullptr;
PxCpuDispatcher* CpuDispatcher = nullptr;
float LastDeltaTime = 0.0f;
#if WITH_VEHICLE
bool VehicleSDKInitialized = false;
Array<PxVehicleWheels*> WheelVehiclesCache;
Array<PxRaycastQueryResult> WheelQueryResults;
Array<PxRaycastHit> WheelHitResults;
Array<PxWheelQueryResult> WheelVehiclesResultsPerWheel;
Array<PxVehicleWheelQueryResult> WheelVehiclesResultsPerVehicle;
PxBatchQuery* WheelRaycastBatchQuery = nullptr;
PxVehicleDrivableSurfaceToTireFrictionPairs* WheelTireFrictions = nullptr;
#endif
}
#if WITH_VEHICLE
Array<WheeledVehicle*> WheelVehicles;
#endif
bool Physics::AutoSimulation = true;
uint32 Physics::LayerMasks[32];
class PhysicsService : public EngineService
{
public:
PhysicsService()
: EngineService(TEXT("Physics"), 0)
{
for (int32 i = 0; i < 32; i++)
Physics::LayerMasks[i] = MAX_uint32;
}
bool Init() override;
void LateUpdate() override;
void Dispose() override;
};
PhysicsService PhysicsServiceInstance;
PxShapeFlags GetShapeFlags(bool isTrigger, bool isEnabled)
{
#if WITH_PVD
PxShapeFlags flags = PxShapeFlag::eVISUALIZATION;
#else
PxShapeFlags flags = static_cast<PxShapeFlags>(0);
#endif
if (isEnabled)
{
if (isTrigger)
{
flags |= PxShapeFlag::eTRIGGER_SHAPE;
if (_queriesHitTriggers)
flags |= PxShapeFlag::eSCENE_QUERY_SHAPE;
}
else
{
flags = PxShapeFlag::eSIMULATION_SHAPE | PxShapeFlag::eSCENE_QUERY_SHAPE;
}
}
return flags;
}
#if WITH_VEHICLE
void InitVehicleSDK()
{
if (!VehicleSDKInitialized)
{
VehicleSDKInitialized = true;
PxInitVehicleSDK(*CPhysX);
PxVehicleSetBasisVectors(PxVec3(0, 1, 0), PxVec3(1, 0, 0));
PxVehicleSetUpdateMode(PxVehicleUpdateMode::eVELOCITY_CHANGE);
}
}
static PxQueryHitType::Enum WheelRaycastPreFilter(PxFilterData filterData0, PxFilterData filterData1, const void* constantBlock, PxU32 constantBlockSize, PxHitFlags& queryFlags)
{
// Hardcoded id for vehicle shapes masking
if (filterData0.word3 == filterData1.word3)
{
return PxQueryHitType::eNONE;
}
// Collide for pairs (A,B) where the filtermask of A contains the ID of B and vice versa
if ((filterData0.word0 & filterData1.word1) && (filterData1.word0 & filterData0.word1))
{
return PxQueryHitType::eBLOCK;
}
return PxQueryHitType::eNONE;
}
#endif
void PhysicsSettings::Apply()
{
Time::_physicsMaxDeltaTime = MaxDeltaTime;
_queriesHitTriggers = QueriesHitTriggers;
_frictionCombineMode = FrictionCombineMode;
_restitutionCombineMode = RestitutionCombineMode;
Platform::MemoryCopy(Physics::LayerMasks, LayerMasks, sizeof(LayerMasks));
Physics::SetGravity(DefaultGravity);
Physics::SetBounceThresholdVelocity(BounceThresholdVelocity);
Physics::SetEnableCCD(!DisableCCD);
// TODO: setting eADAPTIVE_FORCE requires PxScene setup (physx docs: This flag is not mutable, and must be set in PxSceneDesc at scene creation.)
// TODO: update all shapes filter data
// TODO: update all shapes flags
/*
{
get all actors and then:
const PxU32 numShapes = actor->getNbShapes();
PxShape** shapes = (PxShape**)SAMPLE_ALLOC(sizeof(PxShape*)*numShapes);
actor->getShapes(shapes, numShapes);
for (PxU32 i = 0; i < numShapes; i++)
{
..
}
SAMPLE_FREE(shapes);
}*/
}
PhysicsSettings::PhysicsSettings()
{
for (int32 i = 0; i < 32; i++)
LayerMasks[i] = MAX_uint32;
}
void PhysicsSettings::Deserialize(DeserializeStream& stream, ISerializeModifier* modifier)
{
DESERIALIZE(DefaultGravity);
DESERIALIZE(TriangleMeshTriangleMinAreaThreshold);
DESERIALIZE(BounceThresholdVelocity);
DESERIALIZE(FrictionCombineMode);
DESERIALIZE(RestitutionCombineMode);
DESERIALIZE(DisableCCD);
DESERIALIZE(EnableAdaptiveForce);
DESERIALIZE(MaxDeltaTime);
DESERIALIZE(EnableSubstepping);
DESERIALIZE(SubstepDeltaTime);
DESERIALIZE(MaxSubsteps);
DESERIALIZE(QueriesHitTriggers);
DESERIALIZE(SupportCookingAtRuntime);
const auto layers = stream.FindMember("LayerMasks");
if (layers != stream.MemberEnd())
{
auto& layersArray = layers->value;
ASSERT(layersArray.IsArray());
for (uint32 i = 0; i < layersArray.Size() && i < 32; i++)
{
LayerMasks[i] = layersArray[i].GetUint();
}
}
}
PhysicalMaterial::PhysicalMaterial()
: _material(nullptr)
{
}
PhysicalMaterial::~PhysicalMaterial()
{
if (_material)
{
Physics::RemoveMaterial(_material);
}
}
PxMaterial* PhysicalMaterial::GetPhysXMaterial()
{
if (_material == nullptr && CPhysX)
{
_material = CPhysX->createMaterial(Friction, Friction, Restitution);
_material->userData = this;
const PhysicsCombineMode useFrictionCombineMode = OverrideFrictionCombineMode ? FrictionCombineMode : _frictionCombineMode;
_material->setFrictionCombineMode(static_cast<PxCombineMode::Enum>(useFrictionCombineMode));
const PhysicsCombineMode useRestitutionCombineMode = OverrideRestitutionCombineMode ? RestitutionCombineMode : _restitutionCombineMode;
_material->setRestitutionCombineMode(static_cast<PxCombineMode::Enum>(useRestitutionCombineMode));
}
return _material;
}
void PhysicalMaterial::UpdatePhysXMaterial()
{
if (_material != nullptr)
{
_material->setStaticFriction(Friction);
_material->setDynamicFriction(Friction);
const PhysicsCombineMode useFrictionCombineMode = OverrideFrictionCombineMode ? FrictionCombineMode : _frictionCombineMode;
_material->setFrictionCombineMode(static_cast<PxCombineMode::Enum>(useFrictionCombineMode));
_material->setRestitution(Restitution);
const PhysicsCombineMode useRestitutionCombineMode = OverrideRestitutionCombineMode ? RestitutionCombineMode : _restitutionCombineMode;
_material->setRestitutionCombineMode(static_cast<PxCombineMode::Enum>(useRestitutionCombineMode));
}
}
bool PhysicsService::Init()
{
#define CHECK_INIT(value, msg) if(!value) { LOG(Error, msg); return true; }
auto cpuInfo = Platform::GetCPUInfo();
auto& settings = *PhysicsSettings::Get();
// Send info
LOG(Info, "Setup NVIDIA PhysX {0}.{1}.{2}", PX_PHYSICS_VERSION_MAJOR, PX_PHYSICS_VERSION_MINOR, PX_PHYSICS_VERSION_BUGFIX);
// Init PhysX foundation object
_foundation = PxCreateFoundation(PX_PHYSICS_VERSION, PhysXAllocatorCallback, PhysXErrorCallback);
CHECK_INIT(_foundation, "PxCreateFoundation failed!");
#if PHYSX_MEMORY_STATS
_foundation->setReportAllocationNames(true);
#endif
// Config
ToleranceScale.length = 100;
ToleranceScale.speed = 981;
PxPvd* pvd = nullptr;
#if WITH_PVD
{
// Init PVD
pvd = PxCreatePvd(*_foundation);
PxPvdTransport* transport = PxDefaultPvdSocketTransportCreate("127.0.0.1", 5425, 100);
//PxPvdTransport* transport = PxDefaultPvdFileTransportCreate("D:\\physx_sample.pxd2");
if (transport)
{
const bool isConnected = pvd->connect(*transport, PxPvdInstrumentationFlag::eALL);
if (isConnected)
{
LOG(Info, "Connected to PhysX Visual Debugger (PVD)");
}
}
CPVD = pvd;
}
#endif
// Init PhysX
CPhysX = PxCreatePhysics(PX_PHYSICS_VERSION, *_foundation, ToleranceScale, false, pvd);
CHECK_INIT(CPhysX, "PxCreatePhysics failed!");
// Init extensions
const bool extensionsInit = PxInitExtensions(*CPhysX, pvd);
CHECK_INIT(extensionsInit, "PxInitExtensions failed!");
// Init collision cooking
#if COMPILE_WITH_PHYSICS_COOKING
#if !USE_EDITOR
if (settings.SupportCookingAtRuntime)
#endif
{
PxCookingParams cookingParams(ToleranceScale);
cookingParams.meshWeldTolerance = 0.1f; // Weld to 1mm precision
cookingParams.meshPreprocessParams = PxMeshPreprocessingFlags(PxMeshPreprocessingFlag::eWELD_VERTICES);
Cooking = PxCreateCooking(PX_PHYSICS_VERSION, *_foundation, cookingParams);
CHECK_INIT(Cooking, "PxCreateCooking failed!");
}
#endif
// Create scene description
PxSceneDesc sceneDesc(CPhysX->getTolerancesScale());
sceneDesc.gravity = C2P(settings.DefaultGravity);
sceneDesc.flags |= PxSceneFlag::eENABLE_ACTIVE_ACTORS;
if (!settings.DisableCCD)
sceneDesc.flags |= PxSceneFlag::eENABLE_CCD;
if (settings.EnableAdaptiveForce)
sceneDesc.flags |= PxSceneFlag::eADAPTIVE_FORCE;
sceneDesc.simulationEventCallback = &EventsCallback;
sceneDesc.filterShader = FilterShader;
sceneDesc.bounceThresholdVelocity = settings.BounceThresholdVelocity;
if (sceneDesc.cpuDispatcher == nullptr)
{
CpuDispatcher = PxDefaultCpuDispatcherCreate(Math::Clamp<uint32>(cpuInfo.ProcessorCoreCount - 1, 1, 4));
CHECK_INIT(CpuDispatcher, "PxDefaultCpuDispatcherCreate failed!");
sceneDesc.cpuDispatcher = CpuDispatcher;
}
if (sceneDesc.filterShader == nullptr)
{
sceneDesc.filterShader = PhysXDefaultFilterShader;
}
// Create scene
PhysicsScene = CPhysX->createScene(sceneDesc);
CHECK_INIT(PhysicsScene, "createScene failed!");
#if WITH_PVD
auto pvdClient = PhysicsScene->getScenePvdClient();
if (pvdClient)
{
pvdClient->setScenePvdFlags(PxPvdSceneFlag::eTRANSMIT_CONSTRAINTS | PxPvdSceneFlag::eTRANSMIT_SCENEQUERIES | PxPvdSceneFlag::eTRANSMIT_CONTACTS);
}
else
{
LOG(Info, "Missing PVD client scene.");
}
#endif
// Init characters controller
ControllerManager = PxCreateControllerManager(*PhysicsScene);
// Create default resources
DefaultMaterial = CPhysX->createMaterial(0.7f, 0.7f, 0.3f);
return false;
#undef CHECK_INIT
}
void PhysicsService::LateUpdate()
{
Physics::FlushRequests();
}
void PhysicsService::Dispose()
{
// Ensure to finish (wait for simulation end)
Physics::CollectResults();
if (CPhysX)
Physics::FlushRequests();
#if WITH_VEHICLE
if (VehicleSDKInitialized)
{
VehicleSDKInitialized = false;
PxCloseVehicleSDK();
}
RELEASE_PHYSX(WheelRaycastBatchQuery);
RELEASE_PHYSX(WheelTireFrictions);
WheelQueryResults.Resize(0);
WheelHitResults.Resize(0);
WheelVehiclesResultsPerWheel.Resize(0);
WheelVehiclesResultsPerVehicle.Resize(0);
#endif
// Cleanup
RELEASE_PHYSX(DefaultMaterial);
SAFE_DELETE(Stepper);
Allocator::Free(ScratchMemory);
ScratchMemory = nullptr;
RELEASE_PHYSX(ControllerManager);
SAFE_DELETE(CpuDispatcher);
// Remove all scenes still registered
const int32 numScenes = CPhysX ? CPhysX->getNbScenes() : 0;
if (numScenes)
{
Array<PxScene*> PScenes;
PScenes.Resize(numScenes);
PScenes.SetAll(nullptr);
CPhysX->getScenes(PScenes.Get(), sizeof(PxScene*) * numScenes);
for (int32 i = 0; i < numScenes; i++)
{
if (PScenes[i])
{
PScenes[i]->release();
}
}
}
#if COMPILE_WITH_PHYSICS_COOKING
RELEASE_PHYSX(Cooking);
#endif
if (CPhysX)
{
PxCloseExtensions();
}
RELEASE_PHYSX(CPhysX);
#if WITH_PVD
RELEASE_PHYSX(CPVD);
#endif
RELEASE_PHYSX(_foundation);
}
PxPhysics* Physics::GetPhysics()
{
return CPhysX;
}
PxCooking* Physics::GetCooking()
{
return Cooking;
}
PxScene* Physics::GetScene()
{
return PhysicsScene;
}
PxControllerManager* Physics::GetControllerManager()
{
return ControllerManager;
}
PxTolerancesScale* Physics::GetTolerancesScale()
{
return &ToleranceScale;
}
Vector3 Physics::GetGravity()
{
return PhysicsScene ? P2C(PhysicsScene->getGravity()) : Vector3::Zero;
}
void Physics::SetGravity(const Vector3& value)
{
if (PhysicsScene)
PhysicsScene->setGravity(C2P(value));
}
bool Physics::GetEnableCCD()
{
return PhysicsScene ? (PhysicsScene->getFlags() & PxSceneFlag::eENABLE_CCD) == PxSceneFlag::eENABLE_CCD : !PhysicsSettings::Get()->DisableCCD;
}
void Physics::SetEnableCCD(const bool value)
{
if (PhysicsScene)
PhysicsScene->setFlag(PxSceneFlag::eENABLE_CCD, value);
}
float Physics::GetBounceThresholdVelocity()
{
return PhysicsScene ? PhysicsScene->getBounceThresholdVelocity() : PhysicsSettings::Get()->BounceThresholdVelocity;
}
void Physics::SetBounceThresholdVelocity(const float value)
{
if (PhysicsScene)
PhysicsScene->setBounceThresholdVelocity(value);
}
void Physics::Simulate(float dt)
{
ASSERT(IsInMainThread() && !_isDuringSimulation);
ASSERT(CPhysX);
const auto& settings = *PhysicsSettings::Get();
// Flush the old/new objects and the other requests before the simulation
FlushRequests();
// Clamp delta
dt = Math::Clamp(dt, 0.0f, settings.MaxDeltaTime);
// Prepare util objects
if (ScratchMemory == nullptr)
{
ScratchMemory = Allocator::Allocate(SCRATCH_BLOCK_SIZE, 16);
}
if (Stepper == nullptr)
{
Stepper = New<FixedStepper>();
}
if (settings.EnableSubstepping)
{
// Use substeps
Stepper->Setup(settings.SubstepDeltaTime, settings.MaxSubsteps);
}
else
{
// Use single step
Stepper->Setup(dt);
}
// Start simulation (may not be fired due to too small delta time)
_isDuringSimulation = true;
if (Stepper->advance(PhysicsScene, dt, ScratchMemory, SCRATCH_BLOCK_SIZE) == false)
return;
EventsCallback.Clear();
LastDeltaTime = dt;
// TODO: move this call after rendering done
Stepper->renderDone();
}
void Physics::CollectResults()
{
if (!_isDuringSimulation)
return;
ASSERT(IsInMainThread());
ASSERT(CPhysX && Stepper);
{
PROFILE_CPU_NAMED("Physics.Fetch");
// Gather results (with waiting for the end)
Stepper->wait(PhysicsScene);
}
#if WITH_VEHICLE
if (WheelVehicles.HasItems())
{
PROFILE_CPU_NAMED("Physics.Vehicles");
// Update vehicles steering
WheelVehiclesCache.Clear();
WheelVehiclesCache.EnsureCapacity(WheelVehicles.Count());
int32 wheelsCount = 0;
for (auto wheelVehicle : WheelVehicles)
{
if (!wheelVehicle->IsActiveInHierarchy())
continue;
auto drive = (PxVehicleWheels*)wheelVehicle->_drive;
ASSERT(drive);
WheelVehiclesCache.Add(drive);
wheelsCount += drive->mWheelsSimData.getNbWheels();
float throttle = wheelVehicle->_throttle;
float brake = wheelVehicle->_brake;
if (wheelVehicle->UseReverseAsBrake)
{
const float invalidDirectionThreshold = 80.0f;
const float breakThreshold = 8.0f;
const float forwardSpeed = wheelVehicle->GetForwardSpeed();
// Automatic gear change when changing driving direction
if (Math::Abs(forwardSpeed) < invalidDirectionThreshold)
{
if (throttle < -ZeroTolerance && wheelVehicle->GetCurrentGear() >= 0 && wheelVehicle->GetTargetGear() >= 0)
{
wheelVehicle->SetCurrentGear(-1);
}
else if (throttle > ZeroTolerance && wheelVehicle->GetCurrentGear() <= 0 && wheelVehicle->GetTargetGear() <= 0)
{
wheelVehicle->SetCurrentGear(1);
}
}
// Automatic break when changing driving direction
if (throttle > 0.0f)
{
if (forwardSpeed < -invalidDirectionThreshold)
{
brake = 1.0f;
}
}
else if (throttle < 0.0f)
{
if (forwardSpeed > invalidDirectionThreshold)
{
brake = 1.0f;
}
}
else
{
if (forwardSpeed < breakThreshold && forwardSpeed > -breakThreshold)
{
brake = 1.0f;
}
}
// Block throttle if user is changing driving direction
if ((throttle > 0.0f && wheelVehicle->GetTargetGear() < 0) || (throttle < 0.0f && wheelVehicle->GetTargetGear() > 0))
{
throttle = 0.0f;
}
throttle = Math::Abs(throttle);
}
else
{
throttle = Math::Max(throttle, 0.0f);
}
// @formatter:off
// Reference: PhysX SDK docs
// TODO: expose input control smoothing data
static constexpr PxVehiclePadSmoothingData padSmoothing =
{
{
6.0f, // rise rate eANALOG_INPUT_ACCEL
6.0f, // rise rate eANALOG_INPUT_BRAKE
12.0f, // rise rate eANALOG_INPUT_HANDBRAKE
2.5f, // rise rate eANALOG_INPUT_STEER_LEFT
2.5f, // rise rate eANALOG_INPUT_STEER_RIGHT
},
{
10.0f, // fall rate eANALOG_INPUT_ACCEL
10.0f, // fall rate eANALOG_INPUT_BRAKE
12.0f, // fall rate eANALOG_INPUT_HANDBRAKE
5.0f, // fall rate eANALOG_INPUT_STEER_LEFT
5.0f, // fall rate eANALOG_INPUT_STEER_RIGHT
}
};
PxVehicleKeySmoothingData keySmoothing =
{
{
3.0f, // rise rate eANALOG_INPUT_ACCEL
3.0f, // rise rate eANALOG_INPUT_BRAKE
10.0f, // rise rate eANALOG_INPUT_HANDBRAKE
2.5f, // rise rate eANALOG_INPUT_STEER_LEFT
2.5f, // rise rate eANALOG_INPUT_STEER_RIGHT
},
{
5.0f, // fall rate eANALOG_INPUT__ACCEL
5.0f, // fall rate eANALOG_INPUT__BRAKE
10.0f, // fall rate eANALOG_INPUT__HANDBRAKE
5.0f, // fall rate eANALOG_INPUT_STEER_LEFT
5.0f // fall rate eANALOG_INPUT_STEER_RIGHT
}
};
// Reference: PhysX SDK docs
// TODO: expose steer vs forward curve into per-vehicle (up to 8 points, values clamped into 0/1 range)
static constexpr PxF32 steerVsForwardSpeedData[] =
{
0.0f, 1.0f,
20.0f, 0.9f,
65.0f, 0.8f,
120.0f, 0.7f,
PX_MAX_F32, PX_MAX_F32,
PX_MAX_F32, PX_MAX_F32,
PX_MAX_F32, PX_MAX_F32,
PX_MAX_F32, PX_MAX_F32,
};
const PxFixedSizeLookupTable<8> steerVsForwardSpeed(steerVsForwardSpeedData, 4);
// @formatter:on
if (wheelVehicle->UseAnalogSteering)
{
switch (wheelVehicle->_driveTypeCurrent)
{
case WheeledVehicle::DriveTypes::Drive4W:
{
PxVehicleDrive4WRawInputData rawInputData;
rawInputData.setAnalogAccel(throttle);
rawInputData.setAnalogBrake(brake);
rawInputData.setAnalogSteer(wheelVehicle->_steering);
rawInputData.setAnalogHandbrake(wheelVehicle->_handBrake);
PxVehicleDrive4WSmoothAnalogRawInputsAndSetAnalogInputs(padSmoothing, steerVsForwardSpeed, rawInputData, LastDeltaTime, false, *(PxVehicleDrive4W*)drive);
break;
}
case WheeledVehicle::DriveTypes::DriveNW:
{
PxVehicleDriveNWRawInputData rawInputData;
rawInputData.setAnalogAccel(throttle);
rawInputData.setAnalogBrake(brake);
rawInputData.setAnalogSteer(wheelVehicle->_steering);
rawInputData.setAnalogHandbrake(wheelVehicle->_handBrake);
PxVehicleDriveNWSmoothAnalogRawInputsAndSetAnalogInputs(padSmoothing, steerVsForwardSpeed, rawInputData, LastDeltaTime, false, *(PxVehicleDriveNW*)drive);
break;
}
}
}
else
{
const float deadZone = 0.1f;
switch (wheelVehicle->_driveTypeCurrent)
{
case WheeledVehicle::DriveTypes::Drive4W:
{
PxVehicleDrive4WRawInputData rawInputData;
rawInputData.setDigitalAccel(throttle > deadZone);
rawInputData.setDigitalBrake(brake > deadZone);
rawInputData.setDigitalSteerLeft(wheelVehicle->_steering < -deadZone);
rawInputData.setDigitalSteerRight(wheelVehicle->_steering > deadZone);
rawInputData.setDigitalHandbrake(wheelVehicle->_handBrake > deadZone);
PxVehicleDrive4WSmoothDigitalRawInputsAndSetAnalogInputs(keySmoothing, steerVsForwardSpeed, rawInputData, LastDeltaTime, false, *(PxVehicleDrive4W*)drive);
break;
}
case WheeledVehicle::DriveTypes::DriveNW:
{
PxVehicleDriveNWRawInputData rawInputData;
rawInputData.setDigitalAccel(throttle > deadZone);
rawInputData.setDigitalBrake(brake > deadZone);
rawInputData.setDigitalSteerLeft(wheelVehicle->_steering < -deadZone);
rawInputData.setDigitalSteerRight(wheelVehicle->_steering > deadZone);
rawInputData.setDigitalHandbrake(wheelVehicle->_handBrake > deadZone);
PxVehicleDriveNWSmoothDigitalRawInputsAndSetAnalogInputs(keySmoothing, steerVsForwardSpeed, rawInputData, LastDeltaTime, false, *(PxVehicleDriveNW*)drive);
break;
}
}
}
}
// Update batches queries cache
if (wheelsCount > WheelQueryResults.Count())
{
if (WheelRaycastBatchQuery)
WheelRaycastBatchQuery->release();
WheelQueryResults.Resize(wheelsCount, false);
WheelHitResults.Resize(wheelsCount, false);
PxBatchQueryDesc desc(wheelsCount, 0, 0);
desc.queryMemory.userRaycastResultBuffer = WheelQueryResults.Get();
desc.queryMemory.userRaycastTouchBuffer = WheelHitResults.Get();
desc.queryMemory.raycastTouchBufferSize = wheelsCount;
desc.preFilterShader = WheelRaycastPreFilter;
WheelRaycastBatchQuery = PhysicsScene->createBatchQuery(desc);
}
// TODO: expose vehicle tires configuration
if (!WheelTireFrictions)
{
PxVehicleDrivableSurfaceType surfaceTypes[1];
surfaceTypes[0].mType = 0;
const PxMaterial* surfaceMaterials[1];
surfaceMaterials[0] = DefaultMaterial;
WheelTireFrictions = PxVehicleDrivableSurfaceToTireFrictionPairs::allocate(1, 1);
WheelTireFrictions->setup(1, 1, surfaceMaterials, surfaceTypes);
WheelTireFrictions->setTypePairFriction(0, 0, 5.0f);
}
// Setup cache for wheel states
WheelVehiclesResultsPerVehicle.Resize(WheelVehiclesCache.Count(), false);
WheelVehiclesResultsPerWheel.Resize(wheelsCount, false);
wheelsCount = 0;
for (int32 i = 0, ii = 0; i < WheelVehicles.Count(); i++)
{
auto wheelVehicle = WheelVehicles[i];
if (!wheelVehicle->IsActiveInHierarchy())
continue;
auto drive = (PxVehicleWheels*)WheelVehicles[ii]->_drive;
auto& perVehicle = WheelVehiclesResultsPerVehicle[ii];
ii++;
perVehicle.nbWheelQueryResults = drive->mWheelsSimData.getNbWheels();
perVehicle.wheelQueryResults = WheelVehiclesResultsPerWheel.Get() + wheelsCount;
wheelsCount += perVehicle.nbWheelQueryResults;
}
// Update vehicles
if (WheelVehiclesCache.Count() != 0)
{
PxVehicleSuspensionRaycasts(WheelRaycastBatchQuery, WheelVehiclesCache.Count(), WheelVehiclesCache.Get(), WheelQueryResults.Count(), WheelQueryResults.Get());
PxVehicleUpdates(LastDeltaTime, PhysicsScene->getGravity(), *WheelTireFrictions, WheelVehiclesCache.Count(), WheelVehiclesCache.Get(), WheelVehiclesResultsPerVehicle.Get());
}
// Synchronize state
for (int32 i = 0, ii = 0; i < WheelVehicles.Count(); i++)
{
auto wheelVehicle = WheelVehicles[i];
if (!wheelVehicle->IsActiveInHierarchy())
continue;
auto drive = WheelVehiclesCache[ii];
auto& perVehicle = WheelVehiclesResultsPerVehicle[ii];
ii++;
#if PHYSX_VEHICLE_DEBUG_TELEMETRY
LOG(Info, "Vehicle[{}] Gear={}, RPM={}", ii, wheelVehicle->GetCurrentGear(), (int32)wheelVehicle->GetEngineRotationSpeed());
#endif
// Update wheels
for (int32 j = 0; j < wheelVehicle->_wheelsData.Count(); j++)
{
auto& wheelData = wheelVehicle->_wheelsData[j];
auto& perWheel = perVehicle.wheelQueryResults[j];
#if PHYSX_VEHICLE_DEBUG_TELEMETRY
LOG(Info, "Vehicle[{}] Wheel[{}] longitudinalSlip={}, lateralSlip={}, suspSpringForce={}", ii, j, Utilities::RoundTo2DecimalPlaces(perWheel.longitudinalSlip), Utilities::RoundTo2DecimalPlaces(perWheel.lateralSlip), (int32)perWheel.suspSpringForce);
#endif
auto& state = wheelData.State;
state.IsInAir = perWheel.isInAir;
state.TireContactCollider = perWheel.tireContactShape ? static_cast<PhysicsColliderActor*>(perWheel.tireContactShape->userData) : nullptr;
state.TireContactPoint = P2C(perWheel.tireContactPoint);
state.TireContactNormal = P2C(perWheel.tireContactNormal);
state.TireFriction = perWheel.tireFriction;
state.SteerAngle = RadiansToDegrees * perWheel.steerAngle;
state.RotationAngle = -RadiansToDegrees * drive->mWheelsDynData.getWheelRotationAngle(j);
state.SuspensionOffset = perWheel.suspJounce;
#if USE_EDITOR
state.SuspensionTraceStart = P2C(perWheel.suspLineStart);
state.SuspensionTraceEnd = P2C(perWheel.suspLineStart + perWheel.suspLineDir * perWheel.suspLineLength);
#endif
if (!wheelData.Collider)
continue;
auto shape = wheelData.Collider->GetPxShape();
// Update wheel collider transformation
auto localPose = shape->getLocalPose();
Transform t = wheelData.Collider->GetLocalTransform();
t.Orientation = Quaternion::Euler(0, state.SteerAngle, state.RotationAngle) * wheelData.LocalOrientation;
t.Translation = P2C(localPose.p) / wheelVehicle->GetScale() - t.Orientation * wheelData.Collider->GetCenter();
wheelData.Collider->SetLocalTransform(t);
}
}
}
#endif
{
PROFILE_CPU_NAMED("Physics.FlushActiveTransforms");
// Gather change info
PxU32 activeActorsCount;
PxActor** activeActors = PhysicsScene->getActiveActors(activeActorsCount);
if (activeActorsCount > 0)
{
// Update changed transformations
// TODO: use jobs system if amount if huge
for (uint32 i = 0; i < activeActorsCount; i++)
{
const auto pxActor = (PxRigidActor*)*activeActors++;
auto actor = dynamic_cast<IPhysicsActor*>((Actor*)pxActor->userData);
ASSERT(actor);
actor->OnActiveTransformChanged(pxActor->getGlobalPose());
}
}
}
{
PROFILE_CPU_NAMED("Physics.SendEvents");
EventsCallback.CollectResults();
EventsCallback.SendTriggerEvents();
EventsCallback.SendCollisionEvents();
EventsCallback.SendJointEvents();
}
// End
_isDuringSimulation = false;
}
bool Physics::IsDuringSimulation()
{
return _isDuringSimulation;
}
PxMaterial* Physics::GetDefaultMaterial()
{
return DefaultMaterial;
}
void Physics::FlushRequests()
{
ASSERT(!IsDuringSimulation());
ASSERT(CPhysX);
PROFILE_CPU();
FlushLocker.Lock();
// Note: this does not handle case when actor is removed and added to the scene at the same time
if (NewActors.HasItems())
{
GetScene()->addActors(NewActors.Get(), NewActors.Count());
NewActors.Clear();
}
for (int32 i = 0; i < Actions.Count(); i++)
{
const auto action = Actions[i];
switch (action.Type)
{
case ActionType::Sleep:
static_cast<PxRigidDynamic*>(action.Actor)->putToSleep();
break;
}
}
Actions.Clear();
if (DeadActors.HasItems())
{
GetScene()->removeActors(DeadActors.Get(), DeadActors.Count(), true);
for (int32 i = 0; i < DeadActors.Count(); i++)
{
DeadActors[i]->release();
}
DeadActors.Clear();
}
if (DeadColliders.HasItems())
{
for (int32 i = 0; i < DeadColliders.Count(); i++)
{
EventsCallback.OnColliderRemoved(DeadColliders[i]);
}
DeadColliders.Clear();
}
if (DeadJoints.HasItems())
{
for (int32 i = 0; i < DeadJoints.Count(); i++)
{
EventsCallback.OnJointRemoved(DeadJoints[i]);
}
DeadJoints.Clear();
}
for (int32 i = 0; i < DeadMaterials.Count(); i++)
{
auto material = DeadMaterials[i];
// Unlink ref to flax object
material->userData = nullptr;
material->release();
}
DeadMaterials.Clear();
for (int32 i = 0; i < _deadObjects.Count(); i++)
{
_deadObjects[i]->release();
}
_deadObjects.Clear();
FlushLocker.Unlock();
}
void Physics::RemoveMaterial(PxMaterial* material)
{
ASSERT(material);
FlushLocker.Lock();
DeadMaterials.Add(material);
FlushLocker.Unlock();
}
void Physics::RemoveObject(PxBase* obj)
{
ASSERT(obj);
FlushLocker.Lock();
_deadObjects.Add(obj);
FlushLocker.Unlock();
}
void Physics::AddActor(PxActor* actor)
{
ASSERT(actor);
FlushLocker.Lock();
if (IsInMainThread())
{
GetScene()->addActor(*actor);
}
else
{
NewActors.Add(actor);
}
FlushLocker.Unlock();
}
void Physics::AddActor(PxRigidDynamic* actor, bool putToSleep)
{
ASSERT(actor);
FlushLocker.Lock();
if (IsInMainThread())
{
GetScene()->addActor(*actor);
if (putToSleep)
actor->putToSleep();
}
else
{
NewActors.Add(actor);
if (putToSleep)
Actions.Add({ ActionType::Sleep, actor });
}
FlushLocker.Unlock();
}
void Physics::RemoveActor(PxActor* actor)
{
ASSERT(actor);
// Unlink ref to flax object
actor->userData = nullptr;
FlushLocker.Lock();
DeadActors.Add(actor);
FlushLocker.Unlock();
}
void Physics::RemoveCollider(PhysicsColliderActor* collider)
{
ASSERT(collider);
FlushLocker.Lock();
DeadColliders.Add(collider);
FlushLocker.Unlock();
}
void Physics::RemoveJoint(Joint* joint)
{
ASSERT(joint);
FlushLocker.Lock();
DeadJoints.Add(joint);
FlushLocker.Unlock();
}